

### Description of Coal

AKHIL KUMAR DWIVEDI ASSISTANT PROFESSOR MOHANLAL SUKHADIA UNIVERSITY UDAIPUR

## Analysis of Coal

#### ➢Ultimate Analysis

- Carbon
- ≻Hydrogen
- Nitrogen
- Sulphur
- ≻Oxygen
- Sulphur
- > Phosphorous

## Analysis of Coal

#### ➢Fuel Ratio

Fixed Carbon to Volatile Ratio

#### ≻Unit Coal

≻Dry Basis

Dry Mineral Free Basis

| Given result                                   | Wanted result                                  |                                                   |                               |                               |                                            |  |  |
|------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------|--|--|
|                                                | As sampled<br>(as received)<br>(as despatched) | Air<br>dried<br>(as fired)                        | Dry                           | Dry,<br>ash-free              | Dry,<br>mineral-matter-free                |  |  |
| As sampled<br>(as received)<br>(as despatched) | _                                              | <u>100 — Mad</u><br>100 — Mar                     | 100<br>100 — Mar              | 100<br>100 – (Mar + Aar)      | 100<br>100 – (Mar + MMar)                  |  |  |
| (as fired)<br>Air dried<br>(as analysed)       | <u>100 – Mar</u><br>100 – Mad                  | -                                                 | $\frac{100}{100-Mad}$         | 100<br>100 – (Mad + Aad)      | 100<br>100 – (Mad + MMad)                  |  |  |
| Dry                                            | $\frac{100 - Mar}{100}$                        | $\frac{100 - Mad}{100}$                           | -                             | $\frac{100}{100 - \text{Ad}}$ | 100<br>100 - MMd                           |  |  |
| Dry, ash-free                                  | $\frac{100 - (Mar + Aar)}{100}$                | $\frac{100 - (\mathrm{Mad} + \mathrm{Aad})}{100}$ | $\frac{100-\mathrm{Ad}}{100}$ | -                             | $\frac{100 - \text{Ad}}{100 - \text{MMd}}$ |  |  |
| Dry, mineral-<br>matter-free                   | 100 – (Mar + MMar)<br>100                      | 100 – (Mad + MMad)<br>100                         | <u>100 – MMd</u><br>100       | $\frac{100 - MMd}{100 - Ad}$  | -                                          |  |  |

Table 4.18 Formulae for calculation of results to different bases.

M = moisture %; A = ash %; MM = mineral matter %; ar = as received basis; ad = air dried basis; d = dry basis. Source: BS 1016-100 (1994). Reproduced with permission of BSI under Licence Number 2002 SK/0003.

#### Table 4.17 Components of coal reporting to different bases.

| Tatal analisture | Surface n                     | noisture |                                 |     |           | Î           |
|------------------|-------------------------------|----------|---------------------------------|-----|-----------|-------------|
| Total moisture   | Air-dried                     | moisture |                                 |     | ,         |             |
|                  | Ash                           |          |                                 | ,   |           |             |
| Mineral matter   | Volatile<br>mineral<br>matter | Volatile | 8                               | 1   |           |             |
| Duro cool        | Volatile<br>organic<br>matter | matter   | mineral matter-free             |     |           | p           |
| Pure coal        | Fixed car                     | bon      | Dry, mineral n<br>Dry, ash-free | Dry | Air-dried | As received |

Source: Ward (1984) with permission of Blackwell Scientific Publications.

### Varieties and Rank of Coal

Peat: 1<sup>st</sup> Distinct product in process of coal formation

Lignite

Sub Bituminous

Bituminous

Semi Anthracite

Anthracite

## Visible components of Coal









# Coal Petrography

The constituent of coal distinguished into macroscopic units called Rock Type or Litho-types and microscopic unit is called Macerals

Macerals derived from Wood

➢ Vitrinite

Fusinite

>Semi-Fusinite

# Coal Petrography

Macerals from plant material other than wood

Exinite

Resinite

Scelrotinite

Algitinite

Macerals from unknown sources

➢ Micrinite

| Lithotype    | Description                                                                                      | Composition                                           |
|--------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Vitrain      | Black, very bright lustre; thin layers break cubically;<br>thick layers have conchoidal fracture | Vitrinite macerals with 20% exinite macerals          |
| Clarain      | Finely stratified layers of vitrain, durain and, in some instances, fusain, medium lustre        | Variable                                              |
| Durain       | Black or grey, dull, rough fracture surfaces                                                     | Mainly inertinite and exinite macerals                |
| Fusain       | Black, silky lustre, friable and soft                                                            | Mainly fusinite                                       |
| Cannel coal  | Black, dull, lustre 'greasy', breaks with conchoidal<br>fracture                                 | Fine maceral particles usually dominated by sporinite |
| Boghead coal | Black or brown, dull, homogeneous, breaks with<br>conchoidal fracture, lustre may be 'greasy'    | Dominated by alginite                                 |
|              |                                                                                                  |                                                       |

#### Table 4.1 Lithotypes of humic and sapropelic coals.

Source: McCabe, 1984.

# Any Questions??

# Thank You !!!